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Dynamical symmetries and conserved quantities 
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10111 Quinby St, Silver Spring, Maryland 20901, USA 

Received 4 July 1978, in final form 23 October 1978 

Abstract. The invariance properties of second order dynamical systems under velocity 
dependent transformations of the coordinates and time are studied. For Lagrangian 
systems the connection between Noether conserved quantities and dynamical symmetries is 
not too direct; however, we show that for general systems dynamical symmetries always 
possess associated conserved quantities, which are invariants of the symmetry group itself. 
In the special case of point symmetries this yields the result that the associated conserved 

quantity is an invariant of the first extended group. 

1. Introduction 

It is well known from Noether’s theorem (Noether 1918) that there is a close conne,ction 
between the conserved quantities of a Lagrangian dynamical system and those trans- 
formations of coordinates and time which preserve the action integral. Trans- 
formations which leave the action invariant form a Lie group, which itself may be a 
proper subgroup of the group of transformations leaving the equations of motion 
invariant (Lutzky 1978). We shall refer to transformations of the coordinates and time 
which leave the equations of motion invariant as point symmetries. 

It is also of interest to study the invariance of dynamical systems under more general 
transformations, which allow the new coordinates and time to depend on the old 
velocities, as well as on the old coordinates and time. Such transformations operate on 
trajectories in space-time, and will be called dynamical symmetries if they preserve the 
equations of motion. The invariance properties of differential equations under deriva- 
tive-dependent transformations have been studied in different contexts by several 
authors (Ovsjannikov 1962, Anderson et a1 1972a, 1972b, 1 9 7 2 ~ ) ;  in particular, 
Anderson and Davison (1974) have given a treatment which may be applied to 
second-order dynamical systems. Their methods constitute an extension of the 
Ovsjannikov theory, which is itself a generalisation of the Lie theory of extended groups 
(Cohen 1931). However, they do not make use of the Lagrangian formalism or 
Noether’s theorem. A recent investigation (Lutzky 1978) shows how a treatment using 
Noether’s theorem relates to and complements the extended group treatment for the 
case of point symmetries. This relationship is further explored here for the case of 
dynamical symmetries, and it is shown that some new features appear. We shall find 
that in the case of Lagrangian systems the connection between conserved quantities and 
dynamical symmetries is not too direct; for instance, there always exists an infinite 
number of linearly independent dynamical symmetries which have no associated 
Noether constant of the motion. However, we will establish a connection between 
dynamical symmetries and conserved quantities for general (that is not necessarily 

0305-4470/79/070973 + 09$01.00 @ 1979 The Institute of Physics 973 



974 M Lutzky 

Lagrangian) dynamical systems; it will turn out that the conserved quantities associated 
with a given dynamical symmetry are invariants of the symmetry group itself. In 
addition we derive a condition for invariance transformations in a different manner than 
that employed by Anderson and Davison (1974); the criterion used here will be that 
conserved quantities must be transformed into conserved quantities. Finally we 
demonstrate that our results apply also to the special case of point symmetries; in 
particular, we show that the conserved quantities associated with a point symmetry 
group are invariants of the first extended group. This has been previously proved only 
for the special case of a Noether invariant associated with a point symmetry of a 
one-dimensional Lagrangian system (Lutzky 1978). 

We call any transformation which possesses an associated Noether conserved quan- 
tity a Noether transformation. It follows from our results that a symmetry trans- 
formation need not be a Noether transformation, and a Noether transformation need 
not be a symmetry transformation. This has previously been noted by Rosen (1972) in 
the context of classical field theory; however, his point of view and approach are quite 
different from ours. 

2. Dynamical symmetries 

We briefly describe here some properties of dynamical symmetries. Consider a 
transformation from the p + 1 variables ql, q2, . . . , qp, t to the p + 1 variables 
Q1, Q2, . . . , Q,, T, and let us suppose that the new variables also depend on the p time 
derivatives dl, &, . . . , qP' This transformation may be written 

Qt = Qi(q, 4, t )  T = T(q,  4, t )  (1) 

where the qf are to be considered functions of the time, t .  The equations qt = qf ( t )  define 
a curve in 4, t space, with df = dqr/dt; the above transformation may therefore be said to 
act on curves in q, t space, and to produce curves in Q, T space. Expressing 91, 4)  in 
terms of t and eliminating t from (1) yields the resulting curve Qf = Q , ( T )  in Q, T space. 
The time derivatives d, = dQJdT may be found in terms of qf, 41, r as follows: 

If we assume that the curve qf = q l ( t )  satisfies the differential equation 

4, = ar(4,4,  t )  ( I  = 1,2 ,  . . . , p )  (3) 
then equation (2) may be written 

Equations (1) and (4) constitute a transformation from the q, q, t variables to the 
Q, Q, T variables; this transformation has the special property of mapping solution 
curves of (if = ar(q, 4, t )  into curves Qi = Q l ( T )  in Q, T space. If this transformation is 
to be a symmetry of (3), it must transform solution curves into solution curves; that is, 
Qf = Qf ( T )  must be a solution of Q, = al(Q, Q, T ) .  We now derive a criterion for this to 
be the case. Our method will be to assume that the transformation is associated with a 
Lie group, and we shall obtain a condition on the infinitesimal generator of the group. 
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Let us suppose that the equations (1) contain a parameter 8, with respect to which 
they form a Lie group. To first order in 8 we may write 

Qi = 41 + h ( q r  4, t )  

aQl/at = e aq,/at, 

T = t + eg(q, 4, t ) .  ( 5 )  

Differentiating, we may form 

aQl/aqm = Stm + 8 bl/aqm, (6 )  

with similar expressions for the other derivatives appearing in (4). Using these results in 
(4) and expanding to first order in 0 we obtain 

dl = d1 + e h  - &jli, (7) 

where 

ql= a d a t  + (aql/aqmhjm + (Jqi/aqm)am, 5 = + (a[/aqm)4m + (a5/acimbm. 
(8) 

From ( 5 )  and (7) we see that the infinitesimal generator of the group may be written 
in the form 

E = 6 a l a r  + q1 a/aql + hi - 4&1 a / a l i l ;  (9 )  

QI = exp(8E) q1 T = exp(8E) t dl = exp(8E) Q1. (10) 

the finite equations of transformation are 

The special form of the coefficient of a/aql in equation (9) guarantees that when the 
group acts upon a solution curve of equation (3) ,  the result constitutes a curve in Q, T 
space, with the Ql given by (1Oc) being precisely the time derivatives along the curve. 
We now derive conditions on 5(q, 4, t )  and q1(q, 4, t )  which ensure that the resultant 
curve in Q, T space is itself a solution of 6, = a l ( ~ ,  d, T ) .  

Let us suppose that the transformation (10) permutes solutions of equation (3) 
among themselves, and let 4 ( q ,  q, t )  be a conserved quantity for (3). Then we may put 

exp(8E) (d (q ,  4, t ) )  = d e x p ( 8 ~ )  4, e x p ( m  4, exp(eE) t )  = 4 ( ~ ,  d, T )  = w e ,  4, 4, t ) .  

If 4 ( q ,  4, t )  = C1 for the solution q1= ql ( t ) ,  then d ( Q ,  Q, T )  = CZ for the solution 
Ql = Q l ( T ) ;  it then follows that q(8 ,  q, 4, t )  is also a conserved quantity. Furthermore, 
in the expansion of 9 in powers of 8, each coefficient must itself be a conserved quantity. 
In particular, consideration of first order terms shows that E{4} is a conserved quantity 

if 4 is. Expressing this result in the form 

allows us to derive a condition which [(q, q, t )  and ql(q, q, t )  must satisfy in order for 
(10) to generate a symmetry transformation of (3). This is done by explicitly carrying 
out the total time differentiation in (1 l ) ,  and simplifying the resultant expression by use 
of the following relations: 

( I l a )  *=3 34 a4 
+--I +-CY1 = 0 

dt a t  aqr adl 
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Equation ( l l a )  is simply the statement that 4 is a conserved quantity. To derive ( l l b )  
we put 

Because of ( l l a )  the quantity in rectangular brackets vanishes, yielding (1  16). Equa- 
tions (1  I C )  and (1 Id)  may be obtained in a similar manner, and using (1 la ,  b, c, d)  in the 
expanded form of (1  1) then yields 

(d/dt)E{4} = [ i j i  -414'-2&i --E{ai}](d4/ad,) = 0. 

Since this must hold for any conserved quantity, we obtain the conditions 

i j ,  - e,$- 2lar - E{a1} = 0 

5(q, 4, t ) ,  771(4, 4, t ) ,  * ' 7 vp(q, 4, t ) .  

( 1 =  1 , 2 , .  . . , p )  (12) 

which constitute a set of p equations in the p + 1 quantities 

This criterion is expressed in a more compact form than that given by Anderson and 
Davison (1974), and its derivation does not require the use of the general-Ovsjannikov 
theory. 

We note here that the transformation (lo),  with 5 and v i  subject to (121, can always 
be interpreted as being simply a point transformation of the 2 p + 1  independent 
variables q1,4,, t. In this case, the domain of the operators exp(6E) is the manifold of all 
possible values of the variables. However, if the transformation is considered to act on 
trajectories and to produce trajectories, then it is clear from what has gone on before 
that both the domain and the range of the operators are limited to the manifold of 
solutions of (3). 

As an example, we may consider the one-dimensional harmonic oscillator, whose 
equation of motion, in suitably normalised coordinates, may be written 

q + q = o  (13) 

( 4 , 4 ,  t )  = -4. (14) 

so that 

Then the condition (12) becomes 

i j  + q  -41:+2ql= 0. (15) 

5 = q 4  77 = -q3 (16a) 

If we assume the forms 5 = d(+(q, t), 77 = v(q, t ) ,  then (15) has the solutions 

(166) 
2 5 = q sin t 77 = - q  sin t 
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( 1 6 ~ )  6 = 4 c o s t  ~ = - q  cost 

6 = 0  7?=4 ( 1 6 4  

6 = 0  q = sin t (16e)  

( = O  17 = cos t. ( 1 6 f )  

2 

These symmetry transformations for the harmonic oscillator have been found pre- 
viously by Anderson and Davison (1974).  We will later consider ( 1 6 a )  in more detail; 
the infinitesimal generator of this group is 

E = 4 ( i ( a / a t ) - q 3 ( a / a 4 ) - ( 2 q 2 + 4 * ) q ( a / a 4 ) .  (17)  

3. Dynamical symmetries and Lagrangian systems 

We now study the connection between dynamical symmetries and conserved quantities, 
limiting ourselves at first to systems derivable from a Lagrangian L(4,4, t).  In analogy 
with a previous treatment of point symmetries (Lutzky 1978) we write the general 
Noether-type conserved quantity in the form 

0 = (641 - 1 7 1 )  dLla4f - 6L +f 

6 = 5(4,47 t )  

(18)  
where 

1 7 1  = 7?1(4, 4, t )  f =fi4, t ) .  

We ask the following questions. (i) Given a conserved quantity of the form (18)  
under what circumstances do 5, vl ,  7,1~, . . . , vp determine a dynamical symmetry? (ii) 
Given a dynamical symmetry 6, q l ,  772 ,  . . . , qpr under what conditions does there exist a 
function f(4, t )  such that 0 is conserved? 

We first point out that a consideration of the second question makes it clear why it is 
not useful to allow f to depend on 4. For, if it did, then for arbitrary 6, Tf we could always 
choose 

f (494 ,  t )  = -(&r - 1 7 1 )  a l l a t i f  + 6L + w 7 4 ,  t ) ,  

0 = w 4 7  4, t ) .  

(19)  
where 9 ( 4 7  4, t )  is any conserved quantity. In this case, (18)  becomes 

Thus, any conserved quantity V could be said to be associated with any arbitrary 
transformation defined by 5, 771. This degree of generality is clearly not profitable, so 
that f is always assumed to be of the form f(4, t ) .  

Differentiating (18)  totally with respect to time, we find 

g1 = (d/dt)@L/a4,) - a ~ / a q / .  

If CP is conserved so that & = 0, and if the Euler equations are satisfied, so that 
then 

= 0, 

(21) E{L} + (L = f .  

Conversely, if an f(4, t )  can be found such that (21)  is satisfied, then 0 is conserved. 
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Referring to the condition (12) for the existence of a dynamical symmetry, we note 
that if 6(q, 4, t )  is chosen arbitrarily, the equations may be solved for 
~ ~ ( 4 ,  4, t )  , . , ~ ~ ( 4 ,  4,  t ) .  Because of this freedom in the choice of [ (q ,  4, t ) ,  we can 
construct an infinity of independent dynamical symmetries, all of which fail to satisfy 
(21). Thus, none of these constructed symmetries will determine a Noether quantity 
(18). Similarly, in (21) we may arbitrarily assign the p + 1 functions f(4, t ) ,  ~ , ( q ,  4, t ) ,  
and solve the resulting differential equation for [(q,  4, t ) .  Each of these sets 6, ql, then 
determines a conserved quantity CP; and because the q are arbitrary, the sets can be so 
determined that they do not satisfy (12). We may therefore construct a p+l-fold 
infinity of conserved quantities, each having the property that the associated 6, T~ do not 
define a dynamical symmetry. We thus see that in the case of dynamical symmetries, the 
connection between Noether conserved quantities and invariance transformations is 
not very pronounced. Nevertheless, it is possible to describe a procedure which 
establishes a fairly direct relationship between dynamical symmetries and constants of 
the motion. In this approach, the Lagrangian formalism is not utilised, and the 
particular representation of a conserved quantity in Noether form is not available. 

4. Dynamical symmetries and general systems 

We begin by noting that the general solution of (3) may be written 

41 = 4 d t )  ( I  = 1 , 2 , .  . . , p )  (22) 

and depends on 2p arbitrary constants Ak, A set of 2p equations may be obtained by 
adjoining to (22) the p equations obtainable by time differentiation; this resulting set 
determines the 2p constants as functions of 41, 41, and t. These functions of 41, 41, and t 
are of course constant in time, since the Ak are constants; moreover, any combination 
of these functions yields further conserved quantities. Naturally, this procedure is not of 
much use in determining conserved quantities, since it requires that the general solution 
already be known. However, if a dynamical symmetry is known, then the above 
considerations lead to an approach which can yield a conserved quantity without 
knowledge of the general solution. 

A characteristic property of a symmetry of (3) is that it permutes solutions of (3) 
among themselves. Any transformation which carries one solution of (3) into another 
can be considered to have the effect of changing one set of constants A 1 ,  A2, . . . , Azp 
into another set AI ,  A2,  . . . , AzP. In particular, if a one-parameter Lie group permutes 
solutions among themselves, then there exists a corresponding Lie group acting 
on the constants A 1 , A 2 , .  . . ,Azp. Suppose that this group has an invariant 
S(A1, Az, . . . , Azp); that is, a function of the Ak having the property 

S(Al ,  A2, . . . , Azp) = S ( A , ,  A2,. . . ,A,,). (23) 

From this invariant can be constructed a conserved quantity I (q ,  4, t ) ,  by using the 
above-mentioned expression for the Ak in terms of ql, 4,, and t. Specifically, if we 
replace the constants by their representations in terms of coordinates, velocities, and 
time, then equation (23) assumes the form 

I (q ,  4, t )  = I ( Q ,  6, T ) ,  (24) 

and thus 1 ( 4 , 4 ,  t )  is a conserved quantity for (3). It is natural to consider this constant of 
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the motion I ( q ,  4,  t )  as being associated with the given dynamical symmetry. Further- 
more, I ( q , 4 ,  t )  can be found without knowing the general solution of equation (3), since 
it is clear from the relationship between I (4 ,  4, t )  and S(A,,  A*,  . . . , A*,,) that I ( q ,  4, t )  
is an invariant of the dynamical symmetry group itself; that is, 

E { I }  = 0. (25) 

To show this analytically we apply the group operation (10) to the invariant I ( q ,  q, t )  
and obtain 

exp(0E) I ( q ,  4, t )  = I ( Q ,  6, 7') = S(A) = S(A)  = I ( q , 4 ,  t ) .  (26) 

From (26) we note that exp(0E) r(q, 4, t )  = I ( q ,  4, t ) ,  from which (25 )  follows. This 
result leads to a method whereby a conserved quantity for (3) might be sought when a 
dynamical symmetry of (3) is known. The procedure requires that the invariants of the 
symmetry group be found, for instance by solution of equation (25). Among these 
invariants will be found the conserved quantity f (4 ,4,  t ) .  

It should be noted that the considerations leading to (25 )  may be applied also to 
point symmetries if we interpret the operator 

as representing the generator of the first extension of the group 

here 6 and vr are independent of q, and 

In particular, for Lagrangian systems, we may now associate a conserved quantity 
with any point symmetry not possessing a Noether-type constant of the motion; that is, 
with any point symmetry which leaves the equations of motion invariant but not the 
action (Lutzky 1978). However, the considerations leading to  (25 )  are even more 
general, since they do not require that the system be representable by a Lagrangian at 
all. Consequently, we may state the following general theorem for point symmetries: 

Let the group generated by E = ( ( q ,  t )  a / a t  + qr(q,  t )  d / d q r  be a point symmetry of a 
dynamical system. Then a conserved quantity for the system may be associated with 
this symmetry group, and may be found among the invariants of the first extended 
group. This generalises a theorem proved previously only for the case of a Noether 
conserved quantity in a one-dimensional Lagrangian system: for that special case the 
statement is that the Noether conserved quantity associated with a point symmetry is an 
invariant of the first extended group (Lutzky 1978). 

The fact that (25 )  holds for dynamical symmetries enables us to state a theorem for 
dynamical symmetries which has previously been proved only for point symmetries: if a 
dynamical symmetry changes a given solution into another, then both solutions possess 
the same value of the conserved quantity associated with the symmetry. This follows 
from ( 2 5 )  because E { I }  gives the change in the invariant I (to first order) due to the 
change from one solution to another brought about by the action of the symmetry 
operator. 
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5. Example 

To illustrate the preceding development, we consider the one-dimensional harmonic 
oscillator, whose equation of motion is given by (13) .  The condition for a dynamical 
symmetry, given by ( 1 5 ) ,  is satisfied by (16a), with group generator (17). The invariants 
of this dynamical symmetry group are the independent solutions of the equation 

E{d}= 4 4 ( a ~ / a t ) - 4 3 ( a 4 / a 4 ) - ( 2 4 2 + 4 2 ) q ( a 4 / a 4 )  = 0 (27) 

and may be written 

4 cos r - 4  sin t 
4 

It can easily be verified that 42 is a conserved quantity for the harmonic oscillator, since 
& = 0 if ( 1 3 )  is satisfied. 

Since the exact solution is known for this problem, we may explicitly verify the 
connection between the symmetry group generated by (27) and the corresponding 
group acting on the constants of integration. 

The finite transformations generated by (27) may be given in the form 

Q = 4/(1+ 2eq2)'/2 ( 2 9 ~ )  

d =4/{(i  +2e42)[i+2e(42+(i2)]}1/2 (296) 

T = t + tan-'{(q/d)[l +2e(42+(i2)1"2}-tan-'(q/~). ( 2 9 ~ )  

4 = A  cos r + B sin t, 

4 = -A sin t + B cos t. 

Let the general solution of ( 1 3 )  be given in the form 

(30a)  
with derivative 

(30b) 
Using (30) in (29a) and (29c) and eliminating t from the resulting two equations yields 
the transformed curve in Q, T space: 

Q =A cos T + g  sin T, ( 3 1 )  
where 

A = A/[1+ 28(A2 + B2)]'/' = B / [ 1 +  28(A2 + B2)]' l2 .  (32~2, b )  
Equations (32) represent the group transformation induced on A, B by the symmetry 
transformation (29) acting on solution curves of (13). Note that an invariant of this 
transformation is A / B ,  since, clearly, 

A/l? = A / B .  
Solving for A and B from (30) we find 

A q c o s t - q s i n t  
B=4 cos t + q  sin t'  

which equals 4 2  in (286). We thus have an explicit demonstration of the way the 
induced transformation on the integration constants leads to a conserved quantity 
associated with the dynamical symmetry; this conserved quantity is, in fact, an invariant 
of the dynamical symmetry. 
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We note that with the harmonic oscillator Lagrangian L = q 2  - 4’. and with E given 
by (17), the quantity E { L } + t L  cannot be represented in the form af/at + 4  af/aq, with 
f=f(4,  t ) ;  thus the above dynamical symmetry cannot lead to a conserved quantity of 
Noether form. We conclude by presenting a dynamical symmetry which does lead to a 
Noether conserved quantity for the harmonic oscillator. 

Let 7 = -4, ( =  0; these clearly satisfy condition (15) and therefore define a 
symmetry transformation for the harmonic oscillator. The generator is 

E = -4 a/aq +q a l a 4  
and 

E{L}  + 6L = 4qq. 

It is easy to find an f(q, t )  such that f =  444; we may put 

f = 2q2.  

Q, = ((4 - 77 ) aLc/aq - 

E{4’+q2)=O, 

Then the Noether constant of the motion is 

+ f = 2 (4’ + 4 ’), 

which is the energy for the oscillator. Note also that 

as it must according to the general theory. 
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